The problem of counting sites in the estimation of the synonymous and nonsynonymous substitution rates: implications for the correlation between the synonymous substitution rate and codon usage bias.

نویسندگان

  • Nicolas Bierne
  • Adam Eyre-Walker
چکیده

Most methods for estimating the rate of synonymous and nonsynonymous substitution per site define a site as a mutational opportunity: the proportion of sites that are synonymous is equal to the proportion of mutations that would be synonymous under the model of evolution being considered. Here we demonstrate that this definition of a site can give misleading results and that a physical definition of site should be used in some circumstances. We illustrate our point by reexamining the relationship between codon usage bias and the synonymous substitution rate. It has recently been shown that the rate of synonymous substitution, calculated using the Goldman-Yang method, which encapsulates the mutational-opportunity definition of a site at a high level of sophistication, is either positively correlated or uncorrelated to synonymous codon bias in Drosophila. Using other methods, which account for synonymous codon bias but define a site physically, we show that there is a negative correlation between the synonymous substitution rate and codon bias and that the lack of a negative correlation using the Goldman-Yang method is due to the way in which the number of synonymous sites is counted. We also show that there is a positive correlation between the synonymous substitution rate and third position GC content in mammals, but that the relationship is considerably weaker than that obtained using the Goldman-Yang method. We argue that the Goldman-Yang method is misleading in this context and conclude that methods that rely on a mutational-opportunity definition of a site should be used with caution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Substitution rates in Drosophila nuclear genes: implications for translational selection.

The relationships between synonymous and nonsynonymous substitution rates and between synonymous rate and codon usage bias are important to our understanding of the roles of mutation and selection in the evolution of Drosophila genes. Previous studies used approximate estimation methods that ignore codon bias. In this study we reexamine those relationships using maximum-likelihood methods to es...

متن کامل

Rates of nucleotide substitution and mammalian nuclear gene evolution. Approximate and maximum-likelihood methods lead to different conclusions.

Rates and patterns of synonymous and nonsynonymous substitutions have important implications for the origin and maintenance of mammalian isochores and the effectiveness of selection at synonymous sites. Previous studies of mammalian nuclear genes largely employed approximate methods to estimate rates of nonsynonymous and synonymous substitutions. Because these methods did not account for major ...

متن کامل

The rate of synonymous substitution in enterobacterial genes is inversely related to codon usage bias.

Genes sequences from Escherichia coli, Salmonella typhimurium, and other members of the Enterobacteriaceae show a negative correlation between the degree of synonymous-codon usage bias and the rate of nucleotide substitution at synonymous sites. In particular, very highly expressed genes have very biased codon usage and accumulate synonymous substitutions very slowly. In contrast, there is litt...

متن کامل

Identification of Synonymous Codon Usage Bias in the Pseudorabies Virus UL31 Gene

Background: Little knowledge of synonymous codon usage pattern of pseudorabies virus (PRV) genome, especially the UL31 gene in the process for its evolution is available. Objectives: In the present study, the codon usage bias between PRV UL31 sequence and the UL31-like sequences was identified. Materials and Methods: We used a comprehensive analysi...

متن کامل

Mutational Pressure Drives Evolution of Synonymous Codon Usage in Genetically Distinct Oenothera plastomes

Background: Most of the amino acids are encoded by more than one codon, termed as synonymous codons. Synonymous codon usage is not random as it is unique to species. In each amino acid family, some synonymous codons are preferred and this is referred to as synonymous codon usage bias (SCUB). Trends associated with evolution of SCUB and factors influencing its diversification in plastomes of gen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 165 3  شماره 

صفحات  -

تاریخ انتشار 2003